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Abstract 
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 
1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) 
and compare different filtering techniques. Furthermore, we demonstrate experimentally 
that inference in a complex hybrid DBN is possible by simulating fault detection in a 
watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a 
hybrid 2T-DBN. In both experiments, we perform approximate inference using standard 
filtering techniques, Monte Carlo methods and combinations of these. In the watertank 
simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show 
that the unscented Kalman filter and UKF in a particle filtering framework outperform the 
generic particle filter, the extended K h a n  filter and EKF in a particle filtering framework 
with respect to accurary in terms of estimation RMSE and sensitivity with respect to choice 
of network structure. Especially we demonstrate the superiority of UKF in a PF framework 
when our belie& of how data was generated are wrong. Furthermore, we inveitigate the 
influence of data noise in the watertank simulation using UKF and PFUKD and show 
that the algorithms are more sensitive to changes in the measurement noise level that the 
process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000). 
Keywords: Hybrid Bayesian Networks, Dynamic Bayesian Networks, Particle Filter- 
ing, Extended Kalman Filter, Unscented Kalman Filter, Extended Kalman Particle Filter, 
Unscented Filter, Rae-Blackwellisation 

1. Introduction 

Bayesian networks (BN) (J. Pearl, 1988) have been used in a variety of problem domains, 
for example medical expert systems. However, often the problems treated in literature are 
very simple. Much of the work has been focused on static BN's with discrete, stochas- 
tic variables and linear variable relations where the model structure allows effective exact 
inference (Doucet et al., 1998). Models allowing time varying relations between network 
variables', dynamic Bayesian networks (DBN) (Dean & Kanazawa, 1989), allow for much 

1. Note that the network structure is not changed over time 
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more complex modelling. However, in discrete DBN’s the cost of inference is exponential 
and in most hybrid (discrete and continuous valued) systems (Kalman filters being the only 
notable exception) the complexity of the belief state grows unboundedly over time (Lerner 
& Parr, 2001). The solution was the introduction of sequential Monte Carlo methods also 
known as particle filters (PF). In (Koller & Lerner, 2000) a PF has been applied to a discrete 
valued traffic monitoring DBN. One of the major drawbacks of PF, however, is that sam- 
pling in high dimensional spaces can be very difficult. In some cases, we can take advantage 
of the model structure and analytically marginalize out substructure(s) conditioned on the 
remaining (sampled) nodes using standard algorithms such as the Kalman filter. Hence, 
we can reduce the sampling space dramatically. This idea has been applied to a variety 
of problems such as concurrent localization and map learning for a mobile robot (Murphy 
& Russell, 2001) which operates in a discrete valued domain. In the hybrid domain, the 
technique has been applied to for example real-time monitoring of complex industrial pro- 
cesses (Modes-Menendez et al., 2002) and fault diagnostics (de Freitas, 2002), but using 
only linear variable relations. In many real-life problems, we need hybrid models that allow 
non-linear relations. Thus we need approximate inference techniques such as the extended 
Kalman filter (EKF) which is an estimator based on the Taylor series expansion of the non- 
linear functions (Grewal & Angus, 1993) or the unscented Kalman filter (UKF) (Julier & 
Uhlmann, 1997). The UKF is a recursive estimator that uses the true (non-linear) models 
and makes a Gaussian approximation of the distribution of the state random variable. Us- 
ing EKF as a proposal generator in a PF framework leads to the extended Kalman particle 
filter Doucet et al. (1998) and using the UKF as proposal generator leads to the unscented 
Filter (v.d. Merwe et al., 2000) in this work abbreviated PFEKF and PFUKF resp. These 
techniques have been used in (v.d. Merwe et al., 2000) on a 1-D continuous valued model. 

Working on non-linear, hybrid DBN’s we allow modelling of many real-life problems. 
Hence, it is of great interest t o  investigate inference in these models. It is the aim of this 
paper to work on a real-life problem with linear as well as non-linear relations and keep 
all observations in their ’true’ domain leading to models with both discrete and continuous 
valued nodes. We assume a Markovian, stationary model and setup a 2T-DBN in which 
nodes given at time t is dependent only on variables at time t and t - 1. We compare several 
different techniques for inference and describe our observations in details. Initially, we com- 
pare the techniques on a dynamic 1-D continuous state estimation problem. The network is 
comparable with the one in (v.d. Merwe et al., 2000), but we use variable relations dioerent 
from the ones used in the data generation to  resemble the most common (and more diffi- 
cult) situation that we do not know how exactly how data was generated. We also extend 
our model to include a third order relation. We visualize the strength of the UKF based 
implementations when the variable relations are of higher order and when the true variable 
relations are unknown. Next, we implement the non-linear, hybrid fault diagnostics DBN 
from (Koller & Lerner, 2000). However, we do not limit ourselves to inference using the 
generic P F  (as in Koller & Lerner, 2000), but take advantage of the network structure. An- 
alytically marginalizing out substructure(s) conditioned on the remaining (sampled) nodes 
is known as Rao-Blackwellisation (RB) (Casella & Robert, 1996). Combining RB with PF 
is known as Rao-Blackwellised particle filtering (RBPF). Strict RB is not possible with non- 
linear equations. In this experiment we apply a technique that we have named ’non-strict’ 
RaeBlackwellisation. That is we keep the non-linear relations, sample the discrete nodes 
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and apply approzimate inference to the remaining (Kalman) substructure as proposed as 
future work in (Koller & Lerner, 2000). We show that UKF and PFUKF are superior with 
respect to estimation root mean-squareerror (RMSE) and discrete failure tracking com- 
pared to  the generic PF, EKF and PFEKF. The performance of the generic PF, EKF and 
PFEKF are also shown to be highly sensitive to the choice of network structure. Hence, 
we propose a new network that solves this problem. An experiment with different levels of 
data noise shows that this aspect is a h  important for our modelling and choice of filtering 
algorithm. Next, we present an experiment using a measurement model different from the 
one used to generate the data as we do not want algorithms that fail when we do not know 
the true variable relations. We demonstrate the superiority of UKF in a PF framework 
when our belie& of how data was generated are wrong. In (Koller & Lerner, 2000) no ex- 
periments are presented using different levels of noise or a false measurement model. 

The paper is outlined as follows: First, we give a very brief overview of Bayesian net- 
works, PF, EKF and UKF and the combination of these. Next, we present our 1-D simu- 
lation using a false process model. Finally, we present the more complex fault diagnostics 
simulation showing significant advantages using UKF and PFUKF. 

2. Filtering in Bayesian Networks 

In this paper, bold face symbols indicate a vector or a matrix and standard face symbols 
are scalars. We focus on experimental results based on existing theory. For a thorough 
description, please refer to (v.d. Merwe et al., 2000). 

Converting a multivariate Gaussian distribution into a Bayesian network by ordering 
the variables 21, ..., zn topologically (parents before children), the distribution of a child 
conditioned on its parents is computed as P ( z i I z 1 ,  ..~, z i -1)  = N (zi; ~ i , o  + z;~: ~ i j z j ,  g;). 

An edge from zj to zi(1 5 j < i) corresponds to Pz,j # 0. Estimating the state of a system 
iising a set of observations that becomes available on-line, i.e. filtering, is solved by modelling 
the evolution of the system. The general state space model (without control inpiit) consists 
of a state transition or state process model and a state measurement model 

P ( W  IXt-l), P(Ytl4 (1) 

where xt E 8". are the states (hidden variables) of the system at time t ,  yt E 8% are the 
observations and p ( z 0 )  is the prior distribution at  time t = 0. The state transitions are a 
first order Markov process and the observations axe assumed to  be independent given the 
states. For example, non-linear, non-Gaussian models can be expressed as 

xt = f(=t-1, Vt-l), Yt = h(% 7%) ( 2 )  

where ut E 8% is the process noise and 7~ E 8% the measurement noise. n o m  eq. 
(2) we get p(ztlzt-1, ~ t - 1 )  = b (5, - f ( ~ t - 1 ,  ~ - 1 ) )  and p(Y , l z t ,  %it> = 6 (Y, - h(Zt, %-I)> 
and obtain an expression for eq. (1): p(ZtIZt-1) = s b (5t - f(Z,-1, @t-l))p(.lit-l)d&-1 

and p( i j t l z t )  = JS ( j j ,  - h(Zt , f i t>)p(%)d%. Our goal is to compute the atering density 
p(ztlyl:t) recursively to  avoid computing the complete posterior density p(zo:tly,:,). Thus 
we avoid keeping track of the complete history of the states and are still able to compute 
estimates of the mean, confidence intervals etc. of the system states. 
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In the extended Kalman filter the standard Kalman filter (for linear systems) is ap- 
plied to non-linear systems with additive white noise by continually updating a linearization 
around the previous state estimate, starting with an initial guess. Hence, it is a minimum 
mean-square-error (MMSE) estimator based on the Taylor series expansion of the non- 
linear functions f and h around the estimates xq-1 of the states xt, for example f(zt, wt) = 

As the EKF only uses the first order terms of the Taylor series expansion of the non-linear 
functions, it may introduce significant errors in the estimation of the posterior distribution 
of the states. Especially if the models are highly non-linear where the local linearity assump- 
tions do not hold. The unscented Kalman filter is a recursive MMSE estimator that does 
not approximate the non-linear process and measurement models, but uses the true models 
and approximates the distribution of the state random variable. The state distribution is 
still represented by a Gaussian random variable, but by a minimal set of deterministically 
chosen sample points that completely capture the true mean and covariance of the Gaussian 
.random variable. When this variable is propagated through the true non-linear system, it 
captures the true mean and covariance to the second order for any non-linearity. To calcu- 
late the statistics of a random variable undergoing a non-linear transformation, as required 
by the UKF, the scaled unscented transformation (SUT) (Julier & Uhlmann, 2002) is used. 
From a computational perspective, the UKF is superior to EKF, as it does not require ex- 
plicit calculation of Jacobians (or Hessians), but computes a covariance matrix square root 
which can be done using a Cholesky factorization in order n2/6. However, by expressing 
the covariance matrices recursively, this can be done in order n; using a recursive update 
to the Cholesky factorization (v.d. Merwe et al., 2000). 

EKF and UKF both rely on a Gaussian approximation. PF represents a generalization 
of Monte Carlo methods for a dynamic process. It constructs the conditional probability 
of the state variables, with respect to the measurements, through a random exploration of 
the state space by entities called particles drawn from a proposal distribution (which should 
resenble the true posterior distribution as much as  possible). A weight is assigned to each 
particle by a Bayes correction term based on the measurements. The algorithm approxi- 
mates the initial distribution Po(z) by N Dirac measures (the particles). Each one has an 
initial probability of 1/N (the weight) and proportionalIy more particles are placed on the 
more probable regions of state space. This representation is equivalent to the bootstrap tech- 
nique. Then the process evolution is done by particle propagation according to the model 
dynamics and, finally, the measurements are incorporated into the particles by the Bayes 
correction factor given by the conditional probability P(ylzi), where y is the measurement 
and xi is the i-th particle state. Therefore, at each time step, the ensemble of particles 
estimates the a posteriori distribution of the state x. In this paper our goal is to perform 
filtering on the given models, that is to compute a sequential estimate of the posterior distri- 
bution at time t without modifying the previously simulated states x0:t-l allowing proposal 
distributions of the form q(xo:tlyl:,) = 9(xo:t-11yl,t_l)q(xtIxo:t-1, yl:J Assuming the states 
follow a k s t  order Markov process and that the observations are conditionally independent 
given the states yields p(x0:t) = ~ ( x o )  l& p(xj1xj-1) and p(yl,,lxo:t) = n,=, p(yjIxj) and 

a recursive estimate for the importance weights wt = ut-1 q(&t,Xo,t-l,Y1:t) 

proposal distribution and a set of prior samples, we are able to sequentially sample and 

f ( q t - 1 ,  q - l ) + +  a (2, ut) 1(Zt=5,jt-l)("t - %It-1) +afg;ut) I ( V t = q t - , ) ( V t  - q t - 1 )  + . . . 

t 

d Y  IXt)dXtlXt- l ) .  Now, given a 

4 



FILTERING IN HYBRID DYNAMIC BAYESIAN NETWORKS 

evaluate likelihood, transition probabilities and importance weights leading to estimates of 
the state mean aad covariance. The transition prior q(xtlq:t-l,yl:,) A p(xt1xt-i) is the 
most popular choice of proposal distribution (even though it gives higher variance as it does 
not include the most recent observations) simply because it is easier to implement. We refer 
to this implementation as the generic PF. For an additive Gaussian process noise model the 
transition prior simplifies to 

p(zt lz t -1)  = N (f(zt-l,O), Qt-1) (3) 

In practice, what happens is that after a few time steps one of the normalized importance 
weights is close to  1 while the rest is close to 0. In other words, a lot of the samples become 
useless and are neglected. To avoid this phenomenon, degeneracy, the particles need to be 
resampled (selection step) to eliminate particles with low importance weights and multiply 
particles with high importance weights. We implemented sampling importance resampling 
(SIR), multinomial sampling and residual resampling, see (v.d. Merwe et al., 2000) and 
(Liu et al., 2000) for details. They are all O ( N )  algorithms. In the experiments, however, 
the choice of resampling algorithm did not seem to influence the results significantly and 
residual resampling was chosen arbitrarily. Another way to introduce sample variety 
after the selection step without affecting the validity of the approximation is to introduce 
a MCMC step of invariant distribution p(q:tlyl:t) on each particle. If the particles are 
distributed according to the posterior p(Xg:tlyl:t), and we apply a Markov chain transition 
kernel K(q:tIjb:t) with invariant distribution p(q:tlyl:t) s.t. J K(q: t l%: t )  p(j7b:tlyl:t) = 
p(m:tlyl:,), we still have a set of particles distributed according to the posterior. However, 
the particles might have been moved to areas of higher likelihood and the total variance of 
the current distribution with respect to the invariant distribution can only decrease (Doucet 
et al., 2000b). In the generic PF this is implemented by sampling from the transition prior 
arid accept according to a Metropolis-Hastings (MH) step. We refer to  this filter as PFMC. 
Usiag the tramition prior zs proposal fistribition we do not include the latest observation. 
To overcome this problem, we use the EKF and UKF as proposal generators. 

In this work, the EKF approximates the optimal MMSE estimator of the system state. It 
computes the conditional mean of the state given all observations recursively through time 
by propagating the Gaussian approximation of the posterior distribution and combining 
it with the new observation available at each time step. That is, the EKF computes the 
recursive approximation of the true posterior filtering density given by 

. 

Using the EKF in a particle filtering framework, a separate EKF is used to generate and 

i = 1, .  . . , N .  Thus, we need to propagate the covariance p(2) and specify the EKF process 
and measurement noise covariances. Secondly, the i-th particle is sampled from this distri- 
bution. This filter is called the extended Kalman particle filter. However, even though the 
EKF moves the prior towards the likelihood, we are still faced with the Gaussian assump 
tion on the form of the posterior and linearization approximations. Comparing eq. (4) with 
the Gaussian transition prior in eq. (3), it is noted that the proposal distribution generated 
by the EKF includes the most current observation at time t. In general though, the true 

propagate a Gaussian proposal distribution for each particle q ( ~  (1) ) X O : ~ - ~ ,  (4 ylCt) N(xtlyl:t), 
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form of this density will not be Gaussian - even with Gaussian process and measurement 
noise - which can be shown using a Bayes rule expansion of the proposal distribution. This 
implies that we are left with an experimental judgement of the gain versus the loss of filter 
performance. As mentioned, the UKF propagates the mean and covariance of the Gaus- 
sian approximation to the state distribution more accurately than the EKF and tends to 
generate better estimates of the true covariance of the state. Furthermore, the distributions 
generated by the UKF generally have a broader overlap with the true posterior distribution 
compared to the EKF estimates which is partly due to the fact that the UKF computes 
the posterior covariance accurately to the second order whereas the EKF uses a f i s t  order 
biased approximation. The UKF also includes the latest observations, but in a more accu- 
rate way. Hence, the UKF is more likely to generate more accurate proposal distributions 
within the particle filtering framework. Using the UKF as proposal distribution generator 
leads to the unscented filter. 

3. 1-D simulation 

Initially, we work on a 1-D continuous valued state estimation problem. We apply the 
generic PF and PFMC and compare these solutions with the EKF and the UKF. We also 
implement PFEKF and PFUKF with and without an MH step (referred to as PFEKFMC 
and PFUKFMC resp. using an MH step). For a more detailed presentation and more 
experiments using this network, please refer to (Andersen & Andersen, 2003). Our DBN 
has three nodes and is illustrated in Figure 1. 

Figure 1: DBN for one-dimensional problem 

The true process model is a noisy .AR(1) model given by xt'= 2 + cos(ant) -t pxt-1. The 
measurement model is given by 

O l X t  t <= 20 
g t =  { 20 < t <= 40 

03xt3 t > 40 
( 5 )  

The measurement model was chosen to compare the algorithms for distributions with in- 
creasing non-linearity. In all experiments we use a = 0 .05 ,p  = 0.5,01 = -1,& = 0.05 
and O3 = 0.01 in the data generation. All experimental results were based on an average 
over 10 runs and all particle filters (all algorithms except EKF and UKF) used a fairly 
low number of particles (500) allowing us to show how the different particle filters perform 
without using too many samples. To simulate a real-life situation where the a prior knowl- 
edge of the system is often incomplete, we propose a process model different from the true 
one to simulate an approximate model. In (v.d. Merwe et al., 2000) experiments using a 
similar network are presented, but most importantly, experiments are only performed using 
the true process and measurement models. Furthermore, the measurement model in (v.d. 
Merwe et ai., 2000) does not include a third order relation. The proposed (false) process 

. 
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model was xt = 2 + cos(art) + Pxt-1 using CY = 0.05 and P = 0.2. In the data generation we 
draw process and measurement noise samples from the Gaussian distributions n / ( O , l )  and 
N(0, l e  - 4) resp. and propose similar noise levels (that is we apply a reasonable process 
noise compared to  our data values (in the range of approximately 0 - 12) and a low mea- 
surement noise indicating reliable observations. The results of this experiment are shown 
in Table 1 and the tracking plots in Figure 2 and 3. In Figure 4 the noise level and the 
RMS error for the EKF/UKF and PFEKF/PFUKF state mean estimates (for t = 41 - 60) 
are shown. 

Algorithm 

Extended Kalman Filter (EKF) 
Unscented K h a n  Filter (UKF) 
Particle Filter - generic (PF) 
Particle Filter - Metropolis-Hastings move (PFMC) 
Particle Filter - EKF proposal (PFEKF) 
Particle Filter - EKF proposal and MH move (PFEKFMC) 
Particle Filter - UKF proposal (PFUKF) 
Particle Filter - UKF proposal and MH move (PFUKFMC) 

RMSE 
mean 
0.8120 
0.3682 
0.9666 
0.9640 
0.7977 
0.7961 
0.0823 
0.0821 

vitr 

0 
0 

8.4e-3 
1.6e-3 
3.9e-6 
3.Oe-5 
1.4e-3 
l.le-3 

Table 1: Mean and variance of RMSE values of state mean estimates using the false process 
and true measurement models, 500 particles and averaging over 10 runs. The 
variance is due to the 10 independent runs which include random steps. 

Finer emirnates (posterior means) vs. True state 
I 

h 
0 T N I X  

Figure 2: T h e  state values, EKF and UKF estimates using the false process and true 
measurement models. Notice how EKF and UKF are similar in the first order 
stage, but in the second and third order stage the UKF estimates are consistently 
closer to  the true state values than the EKF estimates. 

The use of a false process model naturally makes it a lot harder for the algorithms to 
estimate the states as our beliefs of how the data was generated are no longer true. As 
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Filter estimates (postenor means) vs. True state 
.o. TW.X - PF ~ l 8 r n - l .  - PF-EKF -.llrn-(- I - PF-UKF -sem-tl , 

12- 

1 0  - 

x- 

B 
s 

J 

I E "  

Figure 3: True state values, PF, PFEKF and PFUKF estimates using the false process and 
true measurement models Notice how EKF and UKF are similar in the first order 
stage where PF performs poorly in comparison, but in the second and third order 
stage the UKF estimates are consistently closer to the true state values than 
both the PF and the EKF estimates. The larger covariance estimates generated 
by UKF compared to EKF makes UKF better suited as proposal generator in a 
PF framework. PFUKF thus takes advantage of the good properties in UKF as 
well as in PF. 

r .  I 

Figure 4: Noise level and RMS error for PF, PFEKF and PFUKF state mean estimates 
for t > 40 using the false process and true measurement models. Notice how the 
EKF estimates are consistently too large (negative bar values) and how PFEKF is 
not able to  correct these errors. In comparison, UKF most often underestimates, 
but is much closer to the true state values than PF and PFEKF especially when 
the noise samples are large. PFUKF improves the UKF estimates very much and 
hardly makes any mistakes. In comparison, PF itself has a hard time when the 
noise samples are large as with PFEKF, but this simpler approach is actually 
better than PFEKF for small noise samples. 
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mentioned, this is the most likely situation in real life and thus we need a filter which does 
not fail dramatically when our beliefs axe wrong. We notice how the generic P F  is not 
capable of making better state mean estimates than EKF and UKF as sampling from the 
prior using a false process model leads to rather poor results. And the MH move is not 
enough to improve the situation significantly as the prior is too far from the likelihood. 
In similar experiments (data not shown) using the true process and measurement models, 
we observed that the MH step had a more positive effect on the results of the generic PF. 
However, it is interesting to see how the main loss of accuracy compared to  EKF is in the 
first order stage of the measurement model which is seen by comparing the estimates of 
EKF in Figure 2 with the estimates of PF in Figure 3. This is where EKF is able to capture 
the true posterior mean and covariance. In the higher order stages PF is actually giving 
better state mean estimates than EKF. PFEKF/PFEKFMC perform slightly better than 
EKF taking advantage of the sampling as the state variance estimates of EKF are now 
partly based on the Jacobian of a false process model. It is still capable of tracking in the 
first order stage though as illustrated in Figure 2, but its limitations are shown in the higher 
order stages. And finally, PFUKF and PFUKFMC prove their superiority by keeping the 
estimation error on a very low level. UKF itself is suffering from the use of a false process 
model in the higher order stages, but is still capable of working as a proposal generator in 
a PF setup and perform better than the EKF based implementations. Similar experiments 
were performed using the true models and applying Gaussian and Gamma noise (data not 
shown). These experiments supported the results presented here, but the difference in per- 
formance was less significant as the problem was less complicated. Hence, we prefer PFUKF 
when we work on higher order models or feel uncertain that our beliefs are correct and have 
the necessary computational time. Otherwise, we would settle for UKF or the generic PF 
which has the advantage that we can work on model that do not have a Kalman structure. 

The proposed (false) process model was zt = 2 + cos(a7rt) + & t - ~  using a = 0.05 and 
6 = 0.2. 

4. Watertank simulation 

Next, we apply our filtering techniques to a complex hybrid model presented in (Koller & 
Lerner, 2000) which models a process commonly used as a benchmark in the fault diagnos- 
tics (Mosterman & Biswas, 1999). The system is shown in Figure 5. For a more detailed 
presentation and more experiments using this network, please refer to  (Andersen & Ander- 
sen, 2003). In the system Tank1 and Tank2 have pressure PI and P2 resp. The watertanks 

Figure 5: Illustration of the watertank system 
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are connected via a pipe with resistance Rl2 and flow F12. Each tank has a pipe from whch 
water flows out of the tank with resistances RI, and Rao and flows Fl, and F2, resp. The 
first tank also has a constant flow of water Fin going into it. We get measurements Mlo, 
M12 and M20 of the flows in each of the three pipes. The 2T-DBN in Figure 6 describes 
how flow, pressure and resistance are related in theory. Practically, the process and mea- 
surement models and the measurements themselves are noisy. Furthermore, there are three 
possible type of failures in the system: Measurement failure: Usually measurements are 
quite reliable, but in the case of a measurement failure, the measurement becomes extremely 
noisy. Pipe bursts: A pipe can suddenly burst and change its resistance to some unknown 
value Drifts: The resistance of the pipe can drift gradually increaseing or decreasing the 
pipes resistance. 

Figure 6: DBN for the watertank system 

The 2T-DBN modelling the two-tank system is shown in Figure 6 with discrete vari- 
ables depicted as rectangles and continuous variables circles. RF indicate pipe resistance 
faults (drifts or bursts) and M F  indicate measurement failures. P,  F and R are continuous 
valued and indicate pressure, flow and pipe resistance resp. M indicate observable flow 
measurements. All other variables are hidden. By explicitly modelling the pipe resistance, 
we accurately model the physical system. However, as the flow is the ratio between the 
pressure and the resistance we have to deal with ratios which is difficult, especially when 
the values are close to zero. Instead of modelling the resistances we choose to model the 
conductances (reciprocal of the resistance). This transformation results in products rather 
than ratios. The system is still non-linear, but this does not pose a problem for our algo- 
rithms. Note the difference between the measurement failure nodes and the pipe faults. The 
pipe faults are persistent and therefore appear both at time t and time t + 1. Measurement 
failures, on the other hand, are transient and therefore appear only at time t + 1 and need 
not be included in the belief state. As a result, the network has six pipe fault variables 
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and three measurement failure variables, leading to 32,768 different discrete states. To sim- 
plify, the pipe connecting the two tanks can not burst. This would imply writing a new set 
of mass balance equations to model the physical system. As a consequence, the discrete 
variable state space is reduced to  18,432 states. Unfortunately, this network is still far too 
complicated to be able to use exact inference. In fact, the belief state at time t is a mixture 
of Gaussian’s with a number of mixture components that grows exponentially with t ,  and 
with the number of discrete variables in each time slice. 

Suboptimally, we would like to sample all discrete indicator variables, that is conduc- 
tance and measurement failures, which ci~n be grouped into two vector-valued nodes CFt 
and MFt and apply exact inference on the remaining continuous valued nodes, which we 
group into a single vector-valued node, X t .  The observation nodes are likewise grouped into 
a single vector-valued node Yt allowing a transformation of the fairly complicated network 
into a simple network as illustrated in Figure 7. The network corresponds exactly to the 
original network as all connections are expressed in form of the transition matrices, that is 
CFt = A .  CFt-1, X t  = B (CFt)  . Xt-1 and Y t  = D .  X t .  This transformation allows 
us to sample part of the network and apply exact inference algorithms to the remaining 
part. A technique known as Rao-Blackwellisation (FU3). Unfortunately, although the noise 

Figure 7: Simplitied DBN for the watertank problem 

is Gaussian, the dynamics are non-linear, making it hard to integrate out X t .  Hence, we 
apply our apprmimate inference t&ques EKF and CXF and c d  it. ’non-strict’ R.R. To 
compare, we also apply a generic PF, PFMC, PFEKF and PFUKF. 6 programs were cre- 
ated in Matlab implementing the 6 algorithms mentioned above and named accordingly. 
All programs except the generic PF and PFMC were designed as a two-step serial process. 
The first process samples the discrete nodes using a generic PF algorithm, but without 
updating the continuous state variables. The continuous states are then estimated (for each 
particle) in the second process using EKF, UKF, PFEKF or PFUKF. This two-step process 
was used as all the EKF and UKF based algorithms were able to give good estimates of 
the continuous nodes based on poor estimates of the discrete nodes due to  the correction 
step in EKF and UKF. In the proposed network structure, the flow nodes are the only 
nodes directly connected to the observation nodes (see Figure 6). This design favors a 
good estimation of the flow using EKF and the generic PF. In EKF, the Kalman gain is 
partly based on the Jacobian of the measurement model. As the Jacobian is calculated 
by taking the derivative of the measurement model with respect to the 8 continuous state 
variables, only the flow variables will be represented in the Jacobian. Even though pressure 
and conductance are highly correlated with the flow, the Kalman gain only influences the 
flow estimates. As pressure at time t is calculated using pressure and flow at time t - 1, 
a good flow estimate corresponds to a good pressure estimate. However, this is only valid 
if the pressure nodes are initialized correctly and if there is no noise. The conductance at 
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time t is only based on the conductance at  time t - 1 and the conductance failure at time 
t. Assuming the right conductance failures are chosen in the PF step, EKF will produce 
fairly good estimates of the conductance if it is initialized well and if the level of noise is 
low. Figure 8 shows the relative RMSE of the flow, conductance and pressure estimates for 
a typical run using EKF with correct initialization of all state variables. Both process and 
measurement noise samples were drawn from a Gaussian distribution N(0,O.l) which is a 
reasonable noise level compared to the drifting factor of 2 used in this experiment. When 
the conductance (resistance) of a pipe changes, it is due to drifting (or a burst). To be able 
to distinguish between noise and drifting] the drifting factor should be fairly large compared 
to the noise values. Figure 8 illustrates that EKF is making poor conductance and pressure 
estimates whereas the flow estimates are very accurate for all time steps. 

RelaUve mean RMS over time using EKF 
O c a  

- Relawe mean RMS lor mnductana 
- Relauve mean RMS lor pressure - Relauve mean RMS lor Row 

0 07 I 

Figure 8: Relative RMSE for conductance (red graph), pressure (black graph) and flow 
(blue graph) estimates for a typical run using EKF with correct initialization. 
Notice how EKF is only capable of estimating the flow values. 

In the generic PF, a number of particles are produced by sampling from the transition 
prior. In each time step, all particles are weighted according to their likelihood, that is 
based on the difference between the true and predicted values of the observation nodes. 
With only the flow nodes connected to the observation nodes, a particle with accurate 
flow values estimates will give a high likelihood regardless of whether the particle has poor 
conductance or pressure estimates. This problem is illustrated in figure 9 which shows how 
10 particles are weighted for a given time step using the generic PF. The actual weights 
used follow the weights based on the flow values and not the optimal weights. A large 
process noise would make this problem even worse. In UKF, the Kalman gain is based on 
a number of sigma points that are propagated trough the network using the true process 
and measurement models. Both pressure and conductance are highly correlated with the 
observation nodes, even though they are not directly connected] which makes UKF able to 
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Figure 9: The actual weights used in the generic PF (blue bars), the optimal weights based 
on the distance from the true continuous state values (green bars) and the weights 
based on the distance to the true flow values (red bars) for 10 particles. Notice 
how the actual weights used follow the weights based on the flow values and not 
the optimal weights. 

updates all continuous state variables. One of the objectives in the watertank problem is 
to track failures making accurate estimation of the conductance a crucial point. Hence, a 
new network was proposed by eliminating the flow nodes allowing conductance and pressure 
oodes to be directly cnmected to the ohenation nodes. The flow InYeaslrreInYeIlts are now 
predicted based on pressure and conductance plus noise. When data is generated using 
the old network, noise is added to  the flow nodes making the data more noisy in the new 
network. To compare the two networks, the old network was used to generate datasets 
to be used in both networks. One would expect the old network to  make more accurate 
estimates than the new network using a data set generated by itself. Figure 10 shows the 
average RMSE for the conductance and pressure estimates from the two networks using the 
generic PF, EKF and UKF. The results are based on 10 different data sets using 10 runs 
for each data set. Again, the process and measurement noises samples were drawn from a 
Gaussian distribution N(0,O.l) and the conductance drifting set to 2 (change in resistance 
units per time unit). As illustrated, the new network outperforms the old network for 
a l l  continuous state mean estimates using PF and EKF. The difference in performance for 
EKF becomes even more obvious using a poor initialization of the pressure and conductance 
values (data not shown). In comparison, the performance of UKF does not depend on the 
network structure. Based on the experiments, the new network structure was preferred and 
used in all forthcoming experiments. Based on the simulation in sec. 3 and the presented 
experiment, we see no further reason to include the EKF based implementations. We keep 
the generic PF algorithms for comparison. 

To evaluate our estimates of the discrete failure nodes we need to compare the process 
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RMS emr using PF RMS emr using EKF RMS error using UKF 

2.5 t I i =t t ? 
2 

0 

," 1.5 
1 

i 

0 5  

0 
C1OC12C20 P i  P2 

Figure 10: Average RMSE for conductance and pressure estimates using the old network 
(red bars) and the new network (blue bars) with PF, EKF and UKF resp. 
The performance of UKF algorithm is independent of the network structure as 
opposed to PF and EKF. 

and measurement noise levels with the extent to which a certain failure influences the 
flow. To give an indication of how robust the algorithms are with respect to the noise 
level, experiments were performed changing the level of noise in the data. Only UKF and 
PFUKF were used in this experiment as they showed superior performance in the previous 
experiments. In all experiments the true noise levels were used as process and measurement 
noise proposals in the filtering algorithms. Four different process and measurement noise 
levels were used, M(0,  c2),  c2 = 0.01,0.1,0.2 and 0.4. The continuous state mean estimation 
RMSE and the number of wrong failure estimates as a function of the noise levels are shown 
in Figure 11. A time period of 100 time steps were used and the results based on 20 different 
data sets using 10 runs for each data set. Outliers were removed. Notice the nice correlation 
between the RMSE and the number of wrong failure estimates for UKF (two left plots in 
Figure 11) and PFUKF (two right plots in Figure 11). An accurate continuous state estimate 
corresponds to a small RMSE making it easier to track the failures and vice versa. Both the 
RMSE and the average number of wrong failure estimates using UKF and PFUKF are more 
influenced by the level of measurement noise than the process noise as the state estimates 
are updated based on the estimates of the observation nodes. A noisy connection between 
state variables and observation variables is thus more severe than a noisy process model. 
Furthermore, Figure 11 once again illustrates the relationship between UKF and PFUKF. 
PFUKF is doing much better than UKF for large measurement noise levels, but notice that 
the RMSE increases using the smallest process noise level (0.01). Here, PFUKF is actually 
doing worse than UKF. When UKF makes accurate estimates, PFUKF can make matters 
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FhUSE-UKF RMSE w n g  PFVKF 
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Figure 11: Surface plots showing the RVSE (top plots) and CF/MF estimation errors (lower 
plots) using UKF (left plots) and PFUKF (right plots) based on 16 different 
measurement and process noise combinations 

worse by either fitting the measurement noise or sampling from a Gaussian distribution 
that is too wide. 

In a real life simulation one of the major challenges is to come up with reasonable 
process and measurement models. In a simulation we know the true models and hence 
UKF is able to make very accurate state estimates leaving no real space for improvement 
by further sampling in PFUKF. Hence. PFUKF should prove its superiority in scenarios 
where UKF is not given optimal conditions. To investigate this, we experiment by changing 
the proposed measurement model by simply adding 5% to all the flow estimates. P F  and 
PFMC were also included in the experiments for the sake of comparison. 100 particle< 
and 30 subparticles (particles used in the estimation of the continuous states) were used 
over a time period of 60 time steps. The process and measurement noise samples were 
drawn from the Gaussian distribution hf(O.O.1). Table 2 shows the mean continuous state 
mean estimation RMSE and variance using 10 different data sets and 10 runs for each data 
set. The second column shows the average number of incorrect failure estimates. PFUKF 
does not surprisingly show the best ability to deal with a wrong measurement model as 
this was already indicated in the 1-D simulation in sec. 3.  PFUKF is able to move the 
particles towards regions of higher likelihood reducing the RMSE and making tracking of 
the discrete failure nodes easier. We might be able to further improve the PFUKF estimates 
using more particles or subparticles. The experiment once again showed that PFUKF is 
capable of making more accurate state estimates than UKF when the algorithms are not 
given conditions. Furthermore, UKF and PFUKF made more accurate state estimates than 
PF and PFMC. The latter algorithms both fail when our beliefs of how data was generated 
are wrong as indicated in the experiment in sec. 3. 

In (ZOOO), Koller &- Lerner apply a generic PF to the watertank problem using the 
network structure in Figure 6. They propose a s  future work to use a generic P F  to sample 
the discrete failure nodes and a more sopbticated PF to sample the continuous variables as 
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Algorithm RMS CF/MF errors 
mean var - 

Particle Filter - generic (PF) 256 204 56.3 
Particle Filter - Metropolis-Hastings move (PFMC) 227 187 33.8 
Unscented Kalman Filter (UKF) 208 43 30.1 
Particle Filter - UKF proposal (PFUKF) 178 76 23.4 

in this paper. It is impossible to make direct comparisons between this work and the work 
of Koller and Lerner as pipe bursts etc. can be modelled differently. However, as we also use 
the generic PF, a comparison between this and the other filtering techniques can be made. 
In sec. 4 we showed that the generic PF (and EKF) are highly sensitive to the choice of 
network structure and that the UKF based implementations were superior with respect to 
continuous state mean estimation RMSE and discrete failure tracking. UKF and PFUKF 
have outperformed both the generic PF and PFMC in every single experiment. In our 
experiments we were able to track all continuous variable and discrete failure combinations 
very well using UKF or PFUKF and a very low number of particles. Figure 12 shows 
the tracking of C10 (conductance of pipe between Tank1 and the outside world and the 
different events occurring during a typical simulation, similar results were obtained for the 
other continuous variables - data not shown) for a simulation of 100 time steps using UKF. 
We present a tracking plot for UKF instead of the superior PFUKF to show that we can 
track the continuous variables and detect system faults very well using a very low number of 
particles compared to the 50000 particles used in the generic PF in Koller & Lerner (2000) 
without taking advantage of PFUKF, which is computationally more expensive than UKF. 
A drifting factor of 1 was used and both process and measurement noise samples were drawn 
from the Gaussian distribution N(O,0.5). These settings gave a low SNR allowing us to 
illustrate that tracking is possible even in a very noisy environment. The results were based 
on ten runs with one data set using 300 particles. Notice the large error bar at time step 31 
in Figure 12 corresponding to the burst of pipe 3 at  time step 30 (only every second error bar 
plotted for visual reasons). Apparently, UKF had no problem recognizing the measurement 
failures as these events are not seen in the error bars for any of the three variables, as this 
would have caused very large errorbars at the given points in time. Furthermore, notice 
the larger error bars in Figure 12 when the drifting ends at t = 52 which might indicate 
that the system in some runs estimated positive/negative drift of C10 as this is not crucial 
for the flow measurements, when the conductance is very high (low resistance). At t = 80 
it locates the burst of pipe 1 and stays at the bursting level. As mentioned, in (Koller & 
Lerner, 2000), 50000 particles were used in the generic PF. We have shown that the new 
network structure is better suited for PF (and EKF) than the original structure and that 
the UKF based implementations still outperformed the generic PF using using a very low 
number of particles. 
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Figure 12: Tracking of conductance variable C10. The estimated conductance C10 (red 
line) using UKF is plotted with confidence intervals (plus, minus two standard 
deviations from the mean estimate) and the true conductance C10 (black line). 

5. Conclusion 

In this paper we have implemented an extended Kalman filter, an unscented K h a n  filter, 
a generic particle filter, a generic particle filter with MCMC steps, a particle filter with 
EKF proposal and MCMC steps, a particle filter with UKF proposal and MCMC steps 
and applied the different filters to  a 2T-DBN in a simulation of a continuous valued 1-D 
state estimation problem comparable with the experiment presented in (v.d. Merwe et al., 
2oOOj. However, our measurement model was extended to include a third order stage. We 
experimented using the true process and measurement models with Gaussian and Gamma 
noise added (data not shown) and an experiment using a process model diEerent from the 
true one. All experiments indicated that PFUKF (PFUKFMC) were the most accurate 
and reliable filters. The latter setup was the most important experiment as most real- 
life applications involve approximations to the ’true’ (unknown) process and measurement 
models. 

Next, we applied 6 of the 8 filters to  a hybrid 2T-DBN simulation of a watertank problem 
presented in (Koller & Lerner, 2000). We compared two network designs and showed that 
PF and EKF were able to make good estimates of those continuous state variables that 
were connected directly to  the observation nodes. However, the estimates of the remaining 
variables were very inaccurate. In comparison, UKF was able to update all state space 
variables regardless of their connection to the observation nodes and UKF thus performed 
equally well in both networks. The original network structure was discarded and the EKF 
based algorithms not used in further experiments. 

Then we experimented with different levels of data noise. The continuous state mean 
estimates using UKF and PFUKF were influenced more by the measurement noise level 
than the level of process noise. Large measurement noise levels made the UKF estimates 
poor and PFUKF was able to  move the particles towards the true state, hence reducing the 
RMSE. 
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Finally, we experimented using a measurement model different from the true one by 
adding 5% to all the flow estimates. Again, PFUKF was capable of making more accurate 
state estimates than UKF when the algorithms were not given 'optimal' (true models and 
low level of noise) conditions. Furthermore, UKF and PFUKF were making more accurate 
state estimates than the generic PF and PFMC. Section 4 showed that we were able to track 
the discrete failure nodes with a fairly low number of particles using UKF. These results are 
to some extent comparable with the work of Koller and Lerner in (Koller & Lerner, 2000) 
in which a generic PF was applied to the watertank problem using the network structure in 
Figure 6. We have shown that a different network structure merely improved the accuracy 
of the generic PF and still the use of UKF or PFUKF significantly improved the ability to 
track the true failure nodes and estimate the continuous state variables with a low number 
of samples. 

All in all, we have compared several inference techniques and shown that it is possible 
to do inference in a complex hybrid DBN. These networks allow for many complex real- 
life problems to be modelled. We conclude that we should choose PFUKF when we work 
on higher order models, when the measurements are noise (that is when UKF is not able 
to make reliable estimates), when we do not know the 'true' process and measurement 
models and have the necessary computational time. Otherwise, we would settle for UKF or 
standard PF. However, PF has the disadvantage that is is network structure dependent. 

, 

. 

Acknowledgements 

We would like to thank the funds/companies that have supported this work financially: Civilingenior 
Frants Allings fond, Vera og Carl Johan Michaelsens fond, Julie Damms Studiefond, Alexandre 
Haynman og hustru Nina Haynmans fond, Incentive Fonden, Ingeni~rforeningen i Danmark (IDA), 
Familien Hede Nielsens Fond, Danmarks Tekniske Universitet, RS Components A/S, Oticon Fonden, 
Knud Hcijgaards Fond. 

References 

M.N. Andersen and R.O. Andersen. Filtering in Hybrid Dynamic Bayesian Networks Master 
. thesis, IMM, Techinical University of Denmark, 2003. 

G. Casella and C.P. Robert. Rac-Blackwellisation of sampling schemes. Biometrika, 83(1): 
81-94, 1996. 

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Artificial 
Intelligence 93( 1-2): 1-27, 1989. 

A. Doucet, S. Godsill and C. Andrieu. On Sequential Monte Carlo Sampling Methods for 
Bayesian Filtering. Technical report CUED/F-INFENG/TR 310, Dept. of Eng., Cam- 
bridge University, 1998. 

A. Doucet, N. de Freitas, K. Murphy and S. Russell. A Simple Tutorial on RBPF for DBNs. 
2000. 

N. de Freitas. Rao-Blackwellised Particle Filtering for Fault Diagnosis. IEEE Aerospace, 
pages 176-183, 2002. 

18 



FILTERING IN HYBRID DYNAMIC BAYESIAN NETWORKS 

S.M. Grewal and P.A. Angus. Kalmaa Filtering Theory and Practice. Prentice Hall, Upper 
Saddle River, NJ, 1993. 

S.J. Julier and J.K. Uhlmann. A new extension of the Kalman filter to nonlinear systems. 
In Proceedings of AeroSense: The 11 'th International Symposiom on Aerospace/Defence 
Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Manage- 
ment 11. Orlando, Florida, 1997. 

S.J. Julier and J.K. Uhlmann. The Scaled Unscented Transformation. In Proceedings of the 
IEEE American Control Conference, pages 45554559, 2002 

D. Koller and U. Lerner. Sampling in Factored Dynamic Systems. In Sequential Monte Carlo 
Methods in Practice: pages 445464, Springer-Verlag, New York, 2000. 

U. Lerner and R. Parr. Inference in Hybrid Networks: Theoretical Limits and Practical 
Algorithms. In Proceedings of the 17'th Annual Conference o n  Uncertainty in A I  (UAI), 
pages 310-318, 2001. 

J. Liu, R. Chen and T. Logvinenko. A theoretical fiamework for sequential importance sam- 
pling with resamplig. Technical report, Dept. of Stat., Stanford University, California, 
2000. 

Ruben Morales-Menendez, Nando de Freitas and David Poole. Real- Time Monztoring of 
Complex Industrial Processes with Particle Filters. NIPS 2002. 

R. v.d. Merwe, A. Doucet, N. de Freitas &d E. Wan. The Unscented Particle Filter. Tech- 
nical report CUED/F-INFENG/TR-380, Dept. of Eng., Cambridge University, 2000. 

P.J. Mosterman and G. Biswas. Diagnosw of Continuous Valued Systems in Transient Op- 
erating Begims Knowledge System Lahratory, November, 1999. 

K. Murphy and S. Russell. A. Doucet, N. de Freitas and N.J. Gordon, editors. Rao- 
Blackwellised Particle Filtering for Dynamic Bayesian Networks. In Sequential Monte 
Carlo Methods in Practice, Springer-Verlag, New York, 2001. 

J. Pearl. Probabilistic Reasoning in  Intelligent Systems, Morgan-Kaufmann, San Francisco, 
1988. 

19 


